Addendum to Henderson and Smith's Exact Formulas for the Pair Correlation Functions of Charged Hard Spheres in the Mean Spherical Approximation

L. Blum ${ }^{1}$

Received January 27, 1978

Henderson and Smith ${ }^{(1)}$ have derived analytical expressions for the pair correlation functions of a system of charged hard spheres of equal size in the bulk and also near a charged wall, in the mean spherical approximation.

The purpose of this note is to show that a very similar expression is valid for the case of unequal-size hard ions, if certain terms that are small for most electrolytic solutions are neglected. This was suggested by Henderson and Smith.

We use the results of Blum and Høye ${ }^{(2)}$ for this case [Eq. (4.26)]. The Laplace transform of the pair correlation function is

$$
\begin{equation*}
G_{i j}(s)=G_{i j}^{\mathrm{Hs}}(s)-A_{i j} e^{-s \sigma_{i j}}\left(s^{2}+2 \Gamma s+2 \Gamma^{2}-\frac{2 \Gamma^{2}}{\alpha^{2}} \sum_{i} p_{l} a_{l}^{2} e^{-s \sigma_{l}}\right)^{-1} \tag{1}
\end{equation*}
$$

where we are using the notation of Ref. 2. Here

$$
\begin{align*}
A_{i j} & =z_{i} z_{j}\left(\alpha^{2} / 4 \pi\right)\left[\left(1+\Gamma \sigma_{i}\right)\left(1+\Gamma \sigma_{j}\right)\right]^{-1} \tag{2}\\
\alpha^{2} & =4 \pi \beta e^{2} / \epsilon_{0} \tag{3}
\end{align*}
$$

with z_{i} the electrovalence, e the elementary charge, and $\beta=1 / k T$ the Boltzmann thermal factor. The screening parameter Γ and the charge parameter α are obtained from the solution of the mean spherical approximation ${ }^{(2,3)} ; \sigma_{i}$ is the hard ion diameter and $\sigma_{i j}=(1 / 2)\left(\sigma_{i}+\sigma_{j}\right)$.

[^0]Equation (1) is strikingly similar to Eqs. (9) and (10) of Henderson and Smith, so that clearly

$$
\begin{align*}
g_{i j}(r)= & g_{i j}^{\mathrm{HS}}(r)-\frac{A_{i j}}{r} \sum_{m=0}^{\infty} \frac{2 \Gamma^{m+1}}{m!\alpha^{2 m}} \\
& \times\left[\sum_{\left(l_{t}\right)} \prod_{t=1}^{m} \rho_{l_{t}} a_{l_{t}}^{2} F_{m}\left(r-\sigma_{i j}-\sum \sigma_{l_{t}}\right)\right] \tag{4}
\end{align*}
$$

where $F_{m}(r)=0$ for $r<0$, and

$$
F_{m}=r^{m+1} e^{-\Gamma_{r}\left[j_{m-1}\left(\Gamma_{r}\right)-j_{m}\left(\Gamma_{r}\right)\right]}
$$

Also, the sum is over all $\left\{l_{t}\right\}=l_{1}, \ldots, l_{m} ; j_{m}(x)$ is the spherical Bessel function; and $j_{-1}(x)=\cos (x) / x$.

ACKNOWLEDGMENTS

The author is indebted to Dr. D. Henderson for sending him a draft of Ref. 1, and to Dr. Henderson and Prof. Lebowitz for discussions.

REFERENCES

1. D. Henderson and W. R. Smith, J. Stat. Phys., this issue, preceding paper.
2. L. Blum and J. S. Hoye, J. Phys. Chem. $81: 1311$ (1977).
3. L. Blum, Mol. Phys. 30:1529 (1975).

[^0]: ${ }^{1}$ College of Natural Sciences, Physics Department, University of Puerto Rico, Río Piedras, Puerto Rico.

